1. 不定积分(Indefinite Integrals)
题目 1(Problem 1):计算以下不定积分(Evaluate the following indefinite integral):
∫ (3x^2 - 4x + 5) dx
解析(Solution):
- 使用幂法则积分(Using the Power Rule for Integration):
∫ 3x^2 dx = (3/3)x^3 = x^3
∫ -4x dx = (-4/2)x^2 = -2x^2
∫ 5 dx = 5x
结合所有项并加上积分常数 C(Combine all terms and add the constant C):
x^3 - 2x^2 + 5x + C
答案(Answer):∫ (3x^2 - 4x + 5) dx = x^3 - 2x^2 + 5x + C
题目 2(Problem 2):计算以下不定积分(Evaluate the following indefinite integral):
∫ (2e^x + sin x) dx
解析(Solution):
- 逐项积分(Integrate term by term):
∫ 2e^x dx = 2e^x
∫ sin x dx = -cos x
结合所有项并加上积分常数 C(Combine all terms and add C):
2e^x - cos x + C
答案(Answer):∫ (2e^x + sin x) dx = 2e^x - cos x + C
2. 定积分(Definite Integrals)
题目 1(Problem 1):计算以下定积分(Evaluate the following definite integral):
∫[0,2] (3x^2 - 2) dx
解析(Solution):
- 计算不定积分(Find the indefinite integral):
∫ (3x^2 - 2) dx = x^3 - 2x + C
- 计算定积分(Evaluate from 0 to 2):
[2^3 - 2(2)] - [0^3 - 2(0)]
= (8 - 4) - (0 - 0) = 4
答案(Answer):∫[0,2] (3x^2 - 2) dx = 4
3. 部分积分(Integration by Parts)
题目 1(Problem 1):计算以下积分(Evaluate the following integral):
∫ x e^x dx
解析(Solution):
- 使用部分积分公式(Using Integration by Parts Formula):
∫ u dv = uv - ∫ v du
- 设 u = x, dv = e^x dx
则 du = dx, v = ∫ e^x dx = e^x
- 应用部分积分(Apply Integration by Parts):
∫ x e^x dx = x e^x - ∫ e^x dx
= x e^x - e^x + C
答案(Answer):∫ x e^x dx = x e^x - e^x + C
4. 代换法(Substitution Method)
题目 1(Problem 1):计算以下积分(Evaluate the following integral):
∫ (2x) / (x^2 + 1) dx
解析(Solution):
- 设 u = x^2 + 1,则 du = 2x dx
- 代换后积分变为(Substituting):
∫ du / u = ln|u| + C
= ln|x^2 + 1| + C
答案(Answer):∫ (2x) / (x^2 + 1) dx = ln|x^2 + 1| + C