达永编程网

程序员技术分享与交流平台

AP 微积分:积分(Integrals)常考试题及解析

1. 不定积分(Indefinite Integrals)

题目 1(Problem 1):计算以下不定积分(Evaluate the following indefinite integral):

∫ (3x^2 - 4x + 5) dx

解析(Solution):

- 使用幂法则积分(Using the Power Rule for Integration):

∫ 3x^2 dx = (3/3)x^3 = x^3

∫ -4x dx = (-4/2)x^2 = -2x^2

∫ 5 dx = 5x

结合所有项并加上积分常数 C(Combine all terms and add the constant C):

x^3 - 2x^2 + 5x + C

答案(Answer):∫ (3x^2 - 4x + 5) dx = x^3 - 2x^2 + 5x + C

题目 2(Problem 2):计算以下不定积分(Evaluate the following indefinite integral):

∫ (2e^x + sin x) dx

解析(Solution):

- 逐项积分(Integrate term by term):

∫ 2e^x dx = 2e^x

∫ sin x dx = -cos x

结合所有项并加上积分常数 C(Combine all terms and add C):

2e^x - cos x + C

答案(Answer):∫ (2e^x + sin x) dx = 2e^x - cos x + C

2. 定积分(Definite Integrals)

题目 1(Problem 1):计算以下定积分(Evaluate the following definite integral):

∫[0,2] (3x^2 - 2) dx

解析(Solution):

- 计算不定积分(Find the indefinite integral):

∫ (3x^2 - 2) dx = x^3 - 2x + C

- 计算定积分(Evaluate from 0 to 2):

[2^3 - 2(2)] - [0^3 - 2(0)]

= (8 - 4) - (0 - 0) = 4

答案(Answer):∫[0,2] (3x^2 - 2) dx = 4

3. 部分积分(Integration by Parts)

题目 1(Problem 1):计算以下积分(Evaluate the following integral):

∫ x e^x dx

解析(Solution):

- 使用部分积分公式(Using Integration by Parts Formula):

∫ u dv = uv - ∫ v du

- 设 u = x, dv = e^x dx

则 du = dx, v = ∫ e^x dx = e^x

- 应用部分积分(Apply Integration by Parts):

∫ x e^x dx = x e^x - ∫ e^x dx

= x e^x - e^x + C

答案(Answer):∫ x e^x dx = x e^x - e^x + C

4. 代换法(Substitution Method)

题目 1(Problem 1):计算以下积分(Evaluate the following integral):

∫ (2x) / (x^2 + 1) dx

解析(Solution):

- 设 u = x^2 + 1,则 du = 2x dx

- 代换后积分变为(Substituting):

∫ du / u = ln|u| + C

= ln|x^2 + 1| + C

答案(Answer):∫ (2x) / (x^2 + 1) dx = ln|x^2 + 1| + C

控制面板
您好,欢迎到访网站!
  查看权限
网站分类
最新留言